
Sensor Data Processing on a Reconfigurable Processor

Gregory W. Donohoe
ECE/CAMBR, POB 441023

University of Idaho
Moscow, Idaho 83843

Pen-Shu Yeh

NASA GSFC Code 567
Greenbelt MD 20771-0001

Abstract- This paper describes the implementation of two sen-

sor data processing tasks on the Reconfigurable Data Path Proc-
essor (RDPP). These tasks are focal plane array readout correc-
tion, and Fourier transform hyperspectral imager data conver-
sions. These tasks illustrate reconfigurability, dynamic data path
switching, and data path parallelism. The two challenge prob-
lems were demonstrated on an RDPP simulator, helping to vali-
date the RDPP architecture.

I. INTRODUCTION

The Reconfigurable Data Path Processor (RDPP) is a new

on-board data processing architecture for spacecraft instru-
ment data processing, developed under ESTO sponsorship.
The RDPP is run-time reconfigurable, that is, its internal ar-
chitecture is rewired under software control to optimize it for
the processing task at hand. The RDPP is one of the very few
processors designed specifically for reconfigurable comput-
ing.

The RDPP contains 16 on-board processing elements, each

equipped with a 24-bit multiplier, an arithmetic-logic unit
(ALU), signal conditioning logic, and switching logic [1, 2].
Programmable interconnects enable the processing elements
to be connected in a synchronous data flow pipleline. Five
24-bit input and output ports provide a data interface, and 10
control signals synchronize the RDPP to external hardware.
An on-board execution unit with 256 words of memory syn-
chronizes the firing of processing elements. A byte-oriented
host interface connects the RDPP to a host processor, which
can be a microcontroller or a remote processor connected
over a digital bus. The RDPP project has also produced a
suite of development software, including application devel-
opment tools and a functional simulator.

Fig. 1 shows an RDPP processing pipeline. The processing

elements (PEs) can perform arithmetic and logical operations,
and also serve as run-time switches to join two data path
segments. Each PE and IO module has a registered input with
an independent fire signal, controlled by the on-board execu-
tion unit. In the figure, τ represents a processing delay.

p
p

f
p
e
f

c
T
t
R

A

m
a
r
m
e
l

IOM1PE4
τ=2

PE0
τ=2

PE3
τ=3

PE2
τ=2

PE1
τ=4

IOM0

Input

Output

IOM1PE4
τ=2

PE0
τ=2

PE3
τ=3

PE2
τ=2

PE1
τ=4

IOM0

Input

Output

Figure 1: RDPP Processing Pipeline

FirePE0FireIOM0

FireIOM1

FirePE1 FirePE2

FirePE3

FirePE3

FirePE0FirePE0FireIOM0

FireIOM1

FirePE1FirePE1 FirePE2FirePE2

FirePE3FirePE3

FirePE3FirePE3
Each RDPP chip contributes 16 processing elements to a
rocessing pipeline. By tiling RDPP chips, we can construct a
ipeline of arbitrary size.

RDPP operation occurs in two phases:

1. Configuration
2. Execution

In the configuration phase, a host processor sets up the
unction of each module and establishes the topology of the
ipeline. In execution, the on-board execution unit “fires” the
xecutable modules, i.e., the PEs and IO ports. A module
ires when new data are latched into its input.

II. CHALLENGE PROBLEMS

The RDPP is demonstrated on two challenge problems: Fo-

al Plane Array Sensor Readout Correction, and Fourier
ransform Hyperspectral Imager Data conversion. These

asks were demonstrated using RDPP standalone simulator,
DPPSim.

. Focal Plane Array Readout Correction

A solid-state focal plane imaging array (FPA) consists of a
atrix of sensors. Each sensor has a photodetector, typically

 photodiode; a charge storage mechanism; and a small cur-
ent-to-voltage conversion amplifier. An analog readout
echanism such as a charge coupled device (CCD) pipeline

nables the voltage at each pixel to be multiplexed to an ana-
og-to-digital converter (ADC). The imaging elements, or

pixels, are not all uniform. Due to process variations, each
pixel has a unique offset and a unique gain error. This results
in so-called “fixed pattern noise” in an image. FPA readout
correction consists of reading a pixel, multiplying by a gain
correction factor, and subtracting an offset correction factor.

III. PROCESSING ON THE RDPP

We are challenged to formulate these two processing prob-

lems for execution on a reconfigurable processor.

 A. FPA Readout Correction on the RDPP
In addition to nonuniformity, a pixel may be “hot” or

“dead”. A pixel becomes hot when an ion, due to cosmic ra-
diation, is trapped in the photodiode and causes a constant
current to flow, producing a bright spot in the image. A dead
pixel is disabled due to an electronic fault. Hot and dead pix-
els are not responsive to changes in illumination. We can
approximate a complete image by replacing each bad pixel
with a spatial average of neighbors.

Focal Plane Array readout correction demonstrates two im-

portant features of the RDPP: 1) reconfigurability to adapt to
different phases of a problem, and 2) run-time conditional
data path selection. Readout correction consists of two dis-
joint operations:

1. For good pixels, multiply by a gain correction factor,
and subtract and offset correction.

 2. For bad pixels, replace the pixel with a spatial aver-
age of neighbors.

B. Hyperspectral Imager Data Conversion
First, we must acquire the correction data, through calibra-

tion. This requires several configurations. Fig. 3 shows the
hardware configuration. In addition to the RDPP, we need
two read only memories (SRAMs) to hold gain and offset
corrections, and a First-In, First-Out (FIFO) line buffer, to
delay one line of the image. (Addressing logic for the
SRAMs is not shown.)

The purpose of Fourier Transform Hyperspectral Imager

(FTHSI) data conversion is to convert the raw signal data
from a FTHSI instrument into a spectral intensity signal. This
requires appodizing the raw signal, and computing the magni-
tude Fourier transform of the signal. The data used in this
example come from a Kestrel FTHSI instrument similar to
one flown on the Air Force Mighty Sat I.2 satellite [3, 4].

1) First configuration: acquire offset data. We close the ap-
erture to block all light, acquire an image, and store it in
memory. This is the offset or dark current error, scaled by the
corresponding gain error.

Fig 2 shows a block diagram of the FTHSI instrument in a

pushbroom arrangement. A cylindrical lens system images a
stripe of the scene through a slit aperture, to a Sagnac inter-
ferometer. The split-beam interferometer produces interfero-
grams, optical images that contain the Fourier transform of
the spectral intensity. An imaging array captures these inter-
ferograms, which are digitized. The data conversion block is
a digital processor, which appodizes each interferogram to
remove artifacts, then computes the magnitude of the Dis-
crete Fourier Transform (DFT). This produces the spectral
intensity at a point in the image.

2) Second configuration: acquire gain error and find bad

pixels. We present a known, constant gray scene, acquire and
store an image. Ideally, this image will be uniformly gray. In
fact, it will exhibit fixed pattern noise due to the offset and
gain errors. From this, we can easily derive the gain error.

We can now compare the two images to find pixels that

ha
se

The operations required are:

Imaging
Optics

Interfer-
ometer

Imaging
Array

Spectral
Intensity
Map

Slit
Aperture

Appodize
+

| DFT-1 | I(λ)

Interferograms

Scene

Spectral
Intensities

Imaging
Optics

Interfer-
ometer

Imaging
Array

Spectral
Intensity
Map

Slit
Aperture

Appodize
+

| DFT-1 | I(λ)

Interferograms

Scene

Spectral
Intensities

Figure 23: Fourier transform hyperspectral imager schematic
diagram.

1. Remove artifacts due to vignetting.
2. Apply a Hamming window.
3. Compute the magnitude DFT

address

RDPPinput output

IOP2

FTHSI IOP0

IOP1 IOP4

DOM

SRAM
Hamming

SRAM
Data

address

RDPPinput output

IOP2

FTHSIFTHSI IOP0

IOP1 IOP4

DOM

SRAM
Hamming

SRAM
Data

Figure 32: hardware configuration for FPA readout correction.
ve not changed. These are dead pixels; we label them by
tting an unused high-order bit in the offset memory.

3) Third configuration: compute the reciprocal gain func-

tion. Gain correction requires dividing each pixel by a gain
correction factor, or equivalently, multiplying by the recipro-
cal. Division is a complex operation, however, and the RDPP
does not have a hardware divider. However, we can configure
the RDPP to form a pipeline for division. We read each gain
factor from memory, pass it through this pipeline to compute
the reciprocal, and write the reciprocal back into memory.
During the execution phase, only multiplication is required.

We use a well-known recursive division algorithm. For

more details, see [5].

4) Fourth configuration: execution. We now have the cali-

bration data stored in two separate memories, consisting of:
1. The offset values, tagged with a special code for

“bad pixels”
2. The reciprocal of the gain error.

Now we can read and correct images. In our implementa-

tion, the RDPP executes the two types of correction – nonuni-
formity correction, and bad pixel replacement – simultane-
ously, and selects the correct value to output, depending on
whether the pixel has been tagged as “bad”.

The pipeline is shown in Fig. 4. OIP0 through IOP3 are in-

put-output ports, configured for input. DOP is a dedicated
output module. After a latency of 9 cycles, we obtain a cor-
rected pixel on every instruction cycle.

B.

D

gra
cen
sim
no
be
has

The information-bearing signal rides on an underlying curve,
which is due to vignetting of the optical system, as are the
spikes at the ends. We must clean up the signal and remove
the mean. To achieve this, we pass the signal through a high
pass filter. At the same time, we prepare the signal for the
Discrete Fourier Transform, multiplying the signal point-by-
point by a Hamming window. A well-known method for re-
ducing windowing effects, the Hamming window is simply
one half of a period of a cosine function fitted to the width of
the curve. This is computed offline and stored in memory.
Fig. 4 shows the signal after appodization and application of
the Hamming window.

Next, we compute the magnitude Fast Fourier Transform on
the signal. This generates the magnitude spectrum of Fig 5.
This signal has not been calibrated for wavelength or inten-
tisy, so the wavelength and spectral intensity axes are
unitless.

Computing the Discrete Fourier Transform (DFT) or Fast
Fourier Transform (FFT) on the RDPP requires a different
DOP

PEIOP3

Output

IOP0

IOP4

IOP0

Bad pixel
replacement

data path
selector

PE PE PE

PE

PE

PE

PE

PE

Raw Pixels

Gain

Offset

Nonuniformity
Correction

DOP

PEIOP3

Output

IOP0

IOP4

IOP0

Bad pixel
replacement

data path
selector

PE PE PE

PE

PE

PE

PE

PE

Raw Pixels

Gain

Offset

Nonuniformity
Correction

Figure 4: RDPP pipeline for pixel readout correction.

FireDOM

FireIOM3

FireIOM0

FireIOM4

FireIOM0

FireDOM

FireIOM3

FireIOM0

FireIOM4

FireIOM0
 FTHSI Data Conversion on the RDPP

ata arrive from the FTHSI instrument as raw interfero-
ms, like the one shown in Fig. 5. The information is con-
trated in the “burst” at the center. The vertical units are
ply analog-to-digital converter counts, as this signal has

t been calibrated. The signal also has artifacts, which must
removed through a process called appodization. The signal
 been digitized to 12 bits from a focal plane imaging array.

0 100 200 300 400 500 600
-2000

-1500

-1000

-500

0

500

1000

1500

In
te

ns
ity

Pixel number
0 100 200 300 400 500 600

-2000

-1500

-1000

-500

0

500

1000

1500

In
te

ns
ity

Pixel number

Figure 6: Appodized interferograms.
0 100 200 300 400 500 60
0

500

1000

1500

2000

2500

3000

Pixel number

In
te

ns
ity

0 100 200 300 400 500 60
0

500

1000

1500

2000

2500

3000

Pixel number

In
te

ns
ity

Figure 5: raw interferogram.

approach than the familiar Cooley-Tukey FFT algorithms.
The Cooley-Tukey algorithm is optimized for a random-
access computers with a single multiplier. It employs a di-
vide-and-conquer technique to significantly reduce the num-
ber of multiply operations. This requires frequent re-ordering
of the data, however. In contrast, the RDPP is a multiplier-
rich computational platform, and is not random-access: it has
no pool of randomly accessible memory. Data shuffling on
the RDPP is not easy. Therefore, the optimal FFT algorithm
for the RDPP is not the classical one, but is based instead on
the Goertzel algorithm. This is developed in detail in [6].

Fig. 7 shows a converted spectrum. The signal has not been

spectrally calibrated, so the scales on the axes are meaning-
less. However, the form of the spectrum is sensible. The tar-
get is an optical flat, and the source is an incandescent lamp;
the form of the spectrum is a Planck’s Law curve, which we
expect.

Figure 8 shows a possible hardware configuration for FHSI
data conversion. The memory on the left holds the pre-
computed Hamming window coefficients, and the memory on
the right holds the data being converted. In this example, I/O
port IOP4 provides memory addresses to both memory chips,
generated in RDPP software.

One RDPP can compute eight magnitude Fourier coeffi-

cients simultaneously, with a single read through the data.
The magnitude is computed directly – we don’t have to com-
pute the complex-valued DFT first, then take the magnitude
of that. The significant data are contained in about 128 data
points in the center of the interferogram signal. With the Go-
ertzel technique, we can compute only the coefficients we
need, unlike block-oriented FFT algorithms, where we must
compute the FFT on an entire sequence, and extract the use-
ful portion. We can convert 128 data points with a single
RDPP chip in seven blocks of eight points each. This requires

seven “reads” through the 128 data poinaddaddts.

ress

RDPPinput output

IOP2

FTHSI IOP0

IOP1 IOP4

DOM

SRAM
Hamming

SRAM
Data

ress

RDPPinput output

IOP2

FTHSIFTHSI IOP0

IOP1 IOP4

DOM

SRAM
Hamming

SRAM
Data

Figure8: A hardware configuration for FTHSI data conversion.

IV. PERFORMANCE

1) Readout correction. Our implementation of the Focal

Plane Array pixel readout correction requires four configura-
tions: three to acquire and store calibration data, and one to
correct images. The image correction phase has a latency of 9
instruction cycles, and a through put of one processed pixel
per instruction cycle. At an anticipated cycle rate of 60 MHz,
this is 60 megagpixels per second.

This implementation requires two random access memories

and a FIFO line buffer.

2) Hyperspectral Imager Data Conversion. Appodization

can be performed on a single FTHSI interferograms in a sin-
gle pass through the RDPP. The Hamming window can be
applied at the same time. The appodized and windowed im-
age (128 points) is stored in memory.

Computing the magnitude inverse transform on the 128

point sequence in one RDPP takes seven passes through the
data. Between passes, the host must load new coefficients
into 8 processing elements. Each pass though the data takes
about 2.1 microseconds. Loading the 8 coefficients takes
about 0.8 microseconds. Thus, converting the 128-point se-
quence with one RDPP chip requires 3.207)8.01.2(=×+
microseconds. This requires one RDPP chip and at least one
external memory; each memory holds only 128 points of data
plus 128 points of Hamming window.

Since Goertzel algorithm computes the Fourier coefficients

independently, we can use multiple RDPP chips and compute
the FFT on the entire sequence at once, with one read through
the data, and no need to re-load coefficients, in about 2.1 mi-
croseconds. By combining appodization and FFT computa-
tion, a data rate of 2.8 megasamples per second is possible.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Wavelength (λ)

Sp
ec

tra
l I

nt
en

si
ty

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18

Wavelength (λ)

Sp
ec

tra
l I

nt
en

si
ty

Figure 7: Converted spectral intensity signal.

CONCLUSIONS

We have demonstrated two challenge problems on the Re-

configurable Data Path Processor. Both are typical spacecraft
instrument data processing problems. Both problems were
demonstrated using the RDPP simulator, which produces
results that are functionally equivalent to the chip itself.
These demonstrations represent an important step in the vali-
dation of the RDPP architecture.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions of the

RDPP development team: David Buehler, Enrique Coen-
Alfaro, Jagdish Sabde, Nilesh Vyas, Mrinal Kochar, and John
Purviance.

REFERENCES

[1] G.W.Donohoe and P.-S. Yeh, “Reconfigurable Data Path
Processor”, Proc. NASA Earth Sciences Technology Con-
ference, University of Maryland, August 29, 2001.

[1] Donohoe, G.W. and P.-S. Yeh, “A low power reconfigur-

able processor”, Proc. IEEE Aerospace Conference, Big
Sky, MT, March 9-16, 2002.

[3] Otten, L. John III, Eugene W. Butler, J. Bruce Rafert, R.

Glenn Sellar, “The design of an airborne Fourier trans-
form visible hyperspectral imaging system for light air-
craft environmental remote sensing”, Imaging Spectrome-
try, SPIE Vol. 2480, April 1995.

[4] Otten, L. John III, Andrew D. Meigs, R. Glenn Sellar,

“Calibration and performance of the airborne Fourier
transform visible hyperspectral imager (FTHSI)”, Proc.
Second International Airborne Remote Sensing Confer-
ence and Exhibition, San Francisco, CA, 24-27 June,
1996.

[5] Sabde, J., D. Buehler, and G. Donohoe, “Focal Plane Ar-

ray Sensor Readout Correction on a Reconfigurable Proc-
essor”, Proc. 11th NASA Symposium on VLSI Design,
Coeur d’Alene, ID, May 38-29, 2003.

[6] Donohoe, G.W., P.-S. Yeh, and J. Purviance, The Fast

Fourier Transform on a Reconfigurable Processor, Proc
NASA Earth Sciences Technology Conference, Pasadena,
CA, June 11-13, 2002.

	I. Introduction
	II. Challenge Problems
	Focal Plane Array Readout Correction
	Hyperspectral Imager Data Conversion

	III. Processing on the RDPP
	IV. Performance
	Conclusions
	Acknowledgements
	References

